摘要:向量是中学数学学习中的一个重要知识点。运用向量法解题是中学数学解题教学中的一个难点。本文首先归纳总结了向量的定义和向量运算的有关性质,然后运用向量的数量积、向量积、以及模长不等式等性质,结合实例探究了向量法在代数中的证明题、计算题,几何中的平行题、垂直题、夹角题、距离题等中的具体应用,通过普通解法和向量解法的比较,突出向量法解题的规律,发现向量法解题的优势。
关键词 向量;向量法;中学数学;解题;应用。
向量是既有大小又有方向的量,可以应用向量法解决代数问题和几何问题,向量法是他们解题的共同工具。向量具有数的性质和提点,还同时具有几何的性质与特点,因此向量可以作为一个媒介,将代数问题转化为几何问题,同时还可以将几何问题转化为代数问题.向量被引入中学数学教材后,扩宽了中学数学的知识面,丰富了中学数学解题体系,开放了中学学生解题思路与方法。文献[1-3]研究了向量法在代数解题中的运用;文献[4]研究了向量法在解决垂直问题中的运用; 文献[5]研究了向量法在距离问题解题中的运用;文献[6]研究了用向量法在解决角度问题中的运用;文献[7-9]研究了向量法在平行问题解题中的运用;文献[10]中为向量的概念、运算性质、向量法在几何解题中的应用。这些文献多为单纯的解题,缺少分析过程,不够全面透彻。
目录
摘要
Abstract
一、向量法概述
二、 向量法在中学代数题中的应用
1.在代数证明题中的应用
2.在代数计算题中的应用
三、向量法在几何题中的应用
1. 在平行问题中的应用
2. 在垂直问题中的应用
3.在夹角问题中的应用
4. 在距离问题中的应用
四、总结
参考文献