ARIMA融合神经网络的CPI预测.rar

  • 需要金币500 个金币
  • 资料目录论文助手 > 论文题目 > 工业工程 >
  • 转换比率:金钱 X 10=金币数量, 例100元=1000金币
  • 论文格式:Word格式(*.doc)
  • 更新时间:2014-09-15
  • 论文字数:10995
  • 课题出处:(艾米)提供原创资料
  • 资料包括:完整论文

支付并下载

摘要:居民消费价格指数(CPI)是反映国民经济和百姓生活的重要指标,是国内外学者研究的热点.目前,CPI预测主要采用基于传统研究方法或人工神经网络的单一预测方法.近年来的研究表明,组合预测方法比单一预测方法具有更高的预测精度.本文在深入分析了CPI的基础上,建立了单整自回归移动平均(ARIMA)融合神经网络(NN)的CPI时间系列预测模型.通过对我国CPI月度数据的仿真实验,将融合模型与单一模型进行比较,预测结果证实,ARIMA与BP神经网络的组合预测明显优于单一方法的预测. 

关键词:单整自回归移动平均;神经网络;融合模型;CPI预测

 

目录

摘要

ABSTRACT  

第一章 引言-1

第二章 ARIMA和NN模型-4

2.1 ARIMA模型-4

2.1.1 ARIMA模型概念-4

2.1.2 ARIMA模型构建及预测步骤-5

2.2 NN模型-6

2.2.1 NN模型的基本概念-6

2.2.2 BPNN模型及其算法-8

2.2.3 BPNN模型结构-9

2.3 ARIMA和NN的融合模型-10

第三章 融合模型在CPI预测中的应用-12

3.1 样本数据分析-12

3.2 ARIMA融合BPNN的CPI预测模型构建-13

第四章 结论-19

参考文献-20

致 谢-23


支付并下载

提示:本站支持手机(IOS,Android)下载论文,如果手机下载不知道存哪或打不开,可以用电脑下载,不会重复扣费